Microtubules, Motors and Movement: Cell Motility and the Cytoskeleton

John Cooper Dept of Biochemistry & Molecular Biophysics www.cooperlab.wustl.edu jacooper@wustl.edu November 14, 2019

Outline

I. Overview

- II. Microtubules and Actin Filaments Structure and polymerization Dynamics Nucleation centers Associated proteins and assemblies
- III. Motor ProteinsActin MyosinsMicrotubules Kinesins and Dynein
- IV. Cell Machines based on Actin and Microtubules
- V. Intermediate Filaments

Reading in Textbooks

- Alberts et al., Molecular Biology of the Cell, 6th ed., 2014, Garland.
 - Chap. 16 The Cytoskeleton.
 - Available as eBook, https://bit.ly/2AR19DR.
- Lodish et al., Molecular Cell Biology, 8th ed., 2016, Macmillan.
 - Chaps. 17 & 18 Microfilaments, Microtubules and Intermediate Filaments.
 - Available as eBook and hard copy, https://bit.ly/2Qy9Hog.
- Pollard et al., Cell Biology, 3rd ed., 2016, Elsevier.
 - Section IX: Cytoskeleton and Cell Motility. Chaps 33-39.
 - Available as eBook and hard copy, https://amzn.to/ 2OwoAWC.

Movies and Videos Online

- Nikon Microscope Company
 - http://www.microscopyu.com/galleries/
 - Swept Field Confocal Digital Video Gallery
 - Live-Cell Imaging Cell Motility
- Ted Salmon Lab at Chapel Hill
 - http://labs.bio.unc.edu/Salmon/salmonlabmovies.html
- Am Soc for Cell Biology
 - Videos News and Education, http://www.ibiology.org/
 - Webinars on Imaging http://www.ascb.org/webinars/

Related Course Work

- First-Year Lectures
 - Histology
 - Cell-cell Junctions in Epithelial Cell Biology
 - Muscle Cell Biology
 - Physiology
 - Muscle
 - MFM
 - Membrane Receptors and Signaling
 - Neuroscience
 - Axonal Transport and Neurofilaments
- Second-Year Lectures
 - Hematology, Dermatology, Cardiology, Neurology

Microtubules

- Rigid hollow cylinders of 25 nm diameter
- In all eukaryotic cells (FtsZ in bacteria)
- Involved in stable and dynamic structures

Actin

- Flexible microfilaments of 5-10nm diameter
- In all eukaryotic cells (MreB in bacteria)
- Involved in stable and dynamic structures

Intermediate Filaments (IF)

- Rope-like •
- Expressed in most metazoans

Neurofilaments

II. Microtubules and Actin Filaments

- Structure and polymerization
- Dynamics
- Nucleation centers
- Associated proteins and assemblies

Microtubule Structure

Building block = heterodimers of α and β -tubulin

Microtubule Structure

Filament polarity conferred by alpha/beta heterodimer

Microtubules: In vivo dynamics

Microtubules: Polymerization Dynamics

Rate of subunit addition = $k_{on} \times [S]$ Rate of subunit loss = k_{off}

As the polymer grows, subunit concentration [S] diminishes until it reaches a so-called "critical concentration" [Cc] for which ...

Rate of subunit addition = Rate of subunit loss

 $k_{on} x [Cc] = k_{off}$

$$[Cc] = k_{off} / k_{on}$$

Microtubules: Polymerization Dynamics

© Elsevier. Pollard et al: Cell Biology 2e - www.studentconsult.com

Microtubules: Dynamics

Enzymatic activity of tubulin catalyzes hydrolysis of bound GTP to GDP

Hydrolysis catches up with the minus end

Microtubules: Dynamics - "Treadmilling"

GDP tubulin leans toward disassembly k_{off} GDP tubulin >> k_{off} GTP tubulin

Cc(D) >> Cc(T)

For certain concentrations of subunits, minus end will shrink while plus end will elongate

=> "Treadmilling"

Microtubules: Dynamics - "Treadmilling"

Figure 16-15 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Microtubules: Dynamics

"Dynamic Instability" = Growth and Shrinkage Alternate with Stochastic Transitions, termed "Catastrophe" and "Rescue"

Figure 16-16a Molecular Biology of the Cell 5/e (© Garland Science 2008)

Microtubules: Dynamic Instability

Figure 16-17 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Microtubules: Nucleation by Centrosome

Individual microtubules minus ends created by Gamma-Tubulin Ring Complex, "γ-TuRC"

Figure 16-30b Molecular Biology of the Cell 5/e (© Garland Science 2008)

Microtubules: Centrosome

- 2 perpendicular centrioles (Microtubules + other proteins)
- Pericentriolar amorphous material

Microtubules: Centrosome & Centriole Duplication

© Elsevier. Pollard et al: Cell Biology 2e - www.studentconsult.com

Microtubules: Drugs that affect dynamics

- Taxol
 - Bark of the Pacific yew tree "Taxus brevifolia"
 - Breast cancer and other solid tumors
 - Mechanism uncertain
- Colchicine
 - Autumn crocus
 - Gout (from 1500 BC), other inflammatory disease
- Vincristine / vinblastine
 - Vinca plants
 - Childhood leukemia
 - Inhibits mitosis

Actin

Subunit is a *monomer* that binds *ATP*

ATP-binding cleft towards the Pointed / Minus (-) end

© Elsevier. Pollard et al: Cell Biology 2e - www.studentconsult.com

Actin

Flexible filament composed of two protofilaments

Faster Growth at Barbed (plus) End

Actin: Dynamics

ATP hydrolysis occurs at random time (first-order decay)

Actin: Nucleation

Figure 16-34b Molecular Biology of the Cell 5/e (© Garland Science 2008)

Actin filaments often nucleated near membranes

Actin-related-protein (Arp) 2/3 complex is one major nucleator

Actin: Branching Network of Filaments created by Arp2/3 Complex

Figure 16-34c Molecular Biology of the Cell 5/e (© Garland Science 2008)

28

Actin: Nucleation and Elongation by Formins

© Elsevier. Pollard et al: Cell Biology 2e - www.studentconsult.com

Formin dimer nucleates - but NO branch between actin filaments

In cells, multiple formins -> different structures with different functions

Actin: Nucleation and Elongation by Formins

Julian Eskin

Microtubule- and Actin-associated proteins

Monomer binding proteins (kinetics modification) Polymer tip-associated proteins (steric modification) Polymer lateral binding (stability and mechanics) Polymer severing

Microtubules

Monomer-binding Proteins

Actin: Thymosin/Profilin

In cells, ~50% of actin in filament, 50% (50-200 μ M) unpolymerized, but Cc ATP- actin <1 μ M). Other proteins bind and sequester actin monomers.

Thymosin: blocks polymerization of G-actin at either + or - end **Profilin**: Binds + end of G-actin and promote polymerization at + end only

Monomer-binding Proteins

Microtubules: Stathmin

Same principle as thymosin for actin. Binds two tubulin dimers and slows down polymerization rate. Leads to increased frequency of catastrophe because GTP hydrolysis "catches up" with end.

End-binding Proteins - Actin

Gelsolins

-bind to side and barbed (+) end of filaments -block association or dissociation of actin subunit

Heterodimeric capping proteins (CapZ):

-Two subunits bind to barbed (+) end -Also present on barbed (+) end of actin filaments in Z disk

Tropomodulin:

-caps pointed (-) end of stable actin filaments in cooperation with tropomyosin

End-binding Proteins - Microtubules

MAPs: microtubule-associated proteins Kinesin-13: promotes catastrophe

End-binding Proteins - Microtubules

Plus-end tracking proteins (+TIPS): CLIP170 and EB1

Side-binding Proteins - Microtubules

Tau and MAP2 (neurons, brain) XMAP (ubiquitous)

Tau and Alzheimer Disease (AD)

Tau forms intracellular paired helical filaments. Aggregate into neurofibrillary "tangles." Tangle number correlates with disease severity.

Tau mutations: associated with rare cases of dementia. Tau phosphorylation dissociates tau from Microtubules. Hyperphosphorylated tau then proteolytically fragmented and aggregates.

© Elsevier. Pollard et al: Cell Biology 2e - www.studentconsult.com

Side-binding Proteins for Actin Filaments

Tropomyosin (muscle and non-muscle)

Increase tensile strength of actin - stronger filaments

Cofilin

Increase twisting of protofilaments - promotes severing

Actin Filament Severing Proteins: Gelsolin and Cofilin

Microtubule Severing by Katanin (AAA ATPase)

Higher-order Ultrastructural Organization

How do cells organize microtubules and actin filaments into large structures and nano-machines?

Actin: Bundles or Gel-like Networks

Cross-linking by specific proteins

Actin: Filament-Bundling Proteins

Actin: Bundles of Filaments in Cells

Contractile Bundles "Stress fibers" of non-muscle cells

Parallel bundles microvilli and filopodia

Actin: Bundles of Filaments in Cells

Microvilli

Actin: Gel-like Network of Filaments in Cells

Lamellipodia

III. Motor Proteins

Actin - Myosins

Microtubules - Kinesins and Dynein

Motor Proteins

Twisting Head Model

Myosin Lever Arm Orientations

Actin-based motors: Myosin superfamily

Humans have ~40 myosin genes Walk to Barbed (+) end of Actin Filament (except Myosin VI)

Only the motor domain is conserved

ATPase and Actin binding Sites: Linked Functions

Myosin-II Dimer Moving on Actin Filament

Myosin Motor: Motion from Chemical Energy

Binding of ATP -> decreased affinity for actin (myosin head detaches) Weak binding of myosin to another (next) actin -> release of Pi -> tight binding Closing of ATP-binding cleft -> large conformational change (5 nm displacement) ADP released during power stroke

Microtubule-based motors: Kinesin superfamily

Humans: 40 kinesin genes. Generally Plus (+) end directed.

Kinesin-1 Dimer Moving on Microtubule

Kinesin Motor: Motion from Chemical Energy

Microtubule-based Motors

Kinesin-1

© Elsevier. Pollard et al: Cell Biology 2e - www.studentconsult.com

Microtubule-based Motors: Dyneins

- Different evolutionary origin from Myosins and Kinesins
- AAA proteins (ATPases Associated with diverse Activities)
- Cytoplasmic dynein vesicle transport and position
- Motor component of cilia and flagella

© Elsevier. Pollard et al: Cell Biology 2e - www.studentconsult.com

IV. Cellular Machines Based on Microtubules and Actin

- Skeletal muscle (Actin with myosin-II)
- Cilia, flagella (Microtubules with dynein)
- Mitotic spindle (Microtubules with kinesin & dynein)

Striated (Skeletal & Cardiac) Muscle

Filaments, Sarcomeres, Myofibrils

Ca2+-Based Regulation of Contraction

(C)

Familial Hypertrophic Cardiomyopathy

- Inherited human disease
 - Heart dysfunction sudden death
- Autosomal dominant
- Myosin heavy chain gene first
- Other sarcomere components
- Subtle mutations
 - Mild effects on biochemical function

Cilia and Flagella

Flagella

-helical motion -sperm and many protozoa

Cilia

-whip-like motion (swimming breast stroke) -move cells in fluids or fluids over cells

© Elsevier. Pollard et al: Cell Biology 2e - www.studentconsult.com

Axoneme: Motor Core of Cilia and Flagella

How Motion is Generated

Dynein Arms Connect the Microtubule Pairs

© Elsevier. Pollard et al: Cell Biology 2e - www.studentconsult.com

Microtubule Pairs Anchored at Base

How Motion is Generated

Mitotic Spindle: Movement of Chromosomes

Figure 17-30 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Intermediate Filaments

- Filaments 10 nm wide => "intermediate"
- Present in Metazoa / Animals
 - i.e. not Plants or Unicellular Organisms
- Complex Gene Superfamily
 - 70 in Human Genome
- Specific Expression at Different Times and Places

Biochemical Properties In Vitro

- Very stable. Little subunit exchange.
- Very strong. Filaments do not break.
 - MT's strong but brittle
 - Actin weak

Potential Functions In Vivo

- Mechanical Strength of Cytoplasm
- Help a Layer of Epithelial Cells Resist Shear Stress - Filaments Connect to Cellcell Junctions
- Hold Nucleus in Center of Cell

Structure & Assembly

Filament Unraveling: EM

Classes of IF Proteins

			Number of	Size	
Class	Name	Cells	Isoforms	(kD)	Polymers
Ι	Acidic Keratin	Epithelia	~15	40-60	Obligate Heteropolymers
Π	Basic Keratin	Epithelia	~15	50-70	One acidic + one basic
III	Vimentin	Mesenchymal	1	53	
III	Desmin	Muscle	1	52	Homopolymers (single
III	Glial Fibrillary	Glia	1	51	type of subunit) or
	Acidic Protein (GFAP)				co-polymers w/ each
III	Peripherin	Neurons	>1	58	other at varied ratios
IV	Neurofilament H	Neurons	1	135-150	
IV	Neurofilament M	Neurons	1	105-110	H & M each require
IV	Neurofilament L	Neurons	1	60-70	L for polymer
IV	Nestin	Glial scars, Early	1	240	
		neurons & muscle			
V	Lamin A	All	1	60-75	Homopolymers or
V	Lamin B	All	1	60-75	Heteropolymer

Regulation of IF Assembly

- Notoriously Stable
 - No Nucleotide
- Filaments Move Little
 - Precursors Move More
- Disassemble Somewhat during Mitosis
 - Phosphorylation by Cyclin-dependent Kinase (CDK)

Vimentin

- All Cells in Early Development
- Cage Around Nucleus
- Interacts with Microtubules
- Vimentin Knockout Mouse
 - Initially normal at gross inspection
 - Cultured cells have altered properties of uncertain significance

Vimentin: Cage around Nucleus

IFs are Dynamic but Relatively Stable: FRAP of Vimentin vs. Keratin in One Cell

Dynamics of IF Particles in Cell Periphery

11 micrometers over 10 minutes

18 micrometers over 10 minutes

Desmin

- Expressed in Muscle
- Elastic Elements to Prevent Over-stretching
- Connects / Aligns Z lines
- Knockout Mouse Deranged Myofibril Architecture

Keratins

- Expressed in Epithelia
- Keratin Filaments Connect to Desmosome and Hemidesmosomes
- Differentiation of Epidermis includes Production
 of Massive Amounts of Keratin
- Provides Outer Protection of Skin
- Composes Hair, Nails, Feathers, etc.

Density of Keratin Filaments in Outer Epidermis Layers

Keratin Mutations are Basis for Human Epidermal Diseases

- Structure/Function Analysis of Keratin Assembly
- Point Mutation in Terminal Domain Fails to Assemble
- Mutant is Dominant, even in Low Amounts, in Cultured Cells and Mice

Epidermolysis Bullosa Simplex

Wild-type

Mutant

Keratins and EBS

Gene Therapy for Epidermolysis Bullosa

- "Gene Therapy Creates Replacement Skin to Save a Dying Boy." NY Times, 2017 Nov 8.
- Anchors for epidermis to dermis. Recessive mutations: Add wild-type protein.
- Laminins.
 - "Regeneration of the entire human epidermis using transgenic stem cells."
 <u>www.nature.com/articles/nature24487</u>
- Collagen Type VII.
 - "Safety and Wound Outcomes Following Genetically Corrected Autologous Epidermal Grafts in Patients With Recessive Dystrophic Epidermolysis Bullosa." JAMA. 2016. 316:1808.

Neurons

- Neurofilament H, M, L Copolymer
- Prevent Axon Breakage
- Diseases with Clumps of Neurofilaments
 - Superoxide dismutase model for ALS
 - Clumps are secondary, not causative

Neurofilament Transport in Axons

Fig. 7A Uchida & Brown

Filament reversing in growth cone

Time compression 20:1

Photobleached Zone in the Middle

Lamins

- Square Lattice on Inner Surface of Nuclear Membrane
- Present in Metazoans (Animals, not Plants or unicellular organisms)
- Mitosis Breakdown
 - Phosphorylation of A & C by Cyclin-dependent Kinase
 - B remains with Membrane
- Mutations Cause Accelerated Aging Diseases
 - Progerias Dominant Mutations

Nuclear Lamina

